
 Dungeon Wipe: Exploring Dynamic Difficulty 

Adjustment with Power-Up Mechanics 

Tiago Félix1, Fausto Mourato1,2 [0000-0003-4935-7206] and João Morais1 [0009-0006-5067-7185] 

1 ESTSetúbal, Inst. Politécnico Setúbal. Campus IPS, Estefanilha, 2914-508, Setúbal, Portugal 
2 Centro ALGORITMI, University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal 

202100209@estudantes.ips.pt;  

{fausto.mourato, joao.morais}@estsetubal.ips.pt 

Abstract.  Dynamic Difficulty Adjustment (DDA) is a mechanism in video 

games that automatically adapts the game's difficulty based on the player's 

skills or performance, aiming to provide a tailored and engaging experience for 

players of varying abilities. However, such approaches have drawbacks, includ-

ing feelings of unfairness and potential integrity compromise of the gaming ex-

perience. In this paper, we present an action game prototype to test an approach 

that aims to mitigate these drawbacks by applying DDA indirectly to the game-

play and core game content. Our method consists of keeping the core gameplay 

and challenges intact, such as the number of enemies and their features, while 

adjusting the distribution of power-ups during the level. The idea is to distribute 

power-ups, like healing potions, to guide the gaming experience through a state 

of flow, providing moments of alternate tension/relaxation to promote a more 

immersive experience and affective learning steps. Our initial experiments 

show that this approach provides some control over the player’s life value 

through gameplay without obvious interference, suggesting further research. 

Keywords: Power-ups, DDA, Player Experience, Flow. 

1 Introduction 

Game development requires balance between entertainment and engagement. Central 

to this challenge is captivating players to immerse them in a state of optimal engage-

ment, commonly referred to as flow [1], a concept adapted from psychology to video 

games as game flow [2]. Flow is characterized by a balance between the challenge 

and the player's skills, leading to a deeply focused engagement where time seems to 

slip away. Flow implicitly implies the concept of difficulty, which can be linked to 

the subjective concept of player's satisfaction or to more concrete measurements 

based on probabilities of success and failure [3, 4].  

Understanding difficulty in the game design process spans different motivations. 

Whereas it is important from the definition of the experience itself, considering the 

notion of flow, it can be applied differently. One context in which it is important is 

Procedural Content Generation (PCG), the creation of any type of content that is part 

of a game using programmatic instructions in opposition to use tools for the purpose. 

mailto:fausto.mourato,%20joao.morais%7d@estsetubal.ips.pt


2   Félix et al. 

It is thus “the algorithmic creation of game content with limited or indirect user input” 

[5], which can be a difficult task because “the generator has to create the content, 

satisfy constraints imposed by the artist, and return interesting instances for gamers” 

[6]. This includes providing an output with an adequate challenge in which “a minor 

change can affect [the level] with indefinite proportions” [7]. Game wise, the roots of 

PCG can be found in the game Rogue, an influential title that origins the term rogue-

like for games that include levels with rooms and corridors established with random 

factors, providing replayability through an accountable set of possible levels [8].  

 Besides PCG, an interesting research topic that encompasses the concept of diffi-

culty in entitled Dynamic Difficulty Adjustment (DDA). The concept can be traced 

back to the work of Hunicke [9] with the purpose of “modulating in-game systems to 

respond to a particular player’s abilities over the course of a game session”. 

We address DDA in action games, presenting a rogue-like dungeon-crawler that 

applies DDA with a specific approach to control difficulty indirectly, without chang-

ing the main elements (number of opponents, damage factors, etc.) and thus focusing 

complementary elements, mainly power-ups (healing potions, power boosts, etc.).  

2 Related Work 

Regarding game design, numerous approaches have been proposed to conceptual-

ize the notion of difficulty, from quantitative metrics to qualitative assessments, rang-

ing from heuristic models to complex algorithms. Setting up a level implies applying 

patterns in which difficulty is involved, from defining set back penalties and estab-

lishing rules to force players to lose [10]. Tangible metrics and assessments require 

quantitative approaches as difficulty must be measurable and comparable [3, 11].  

Moreover, different genres require different approaches. In racing games, one can 

aim to create fast paced segments of high speed in contrast with sharp turns on specif-

ic locations, while considering aesthetic notions [12, 13]. Multiple strategy games 

focus on leveraging game progress [14]. Platformers focus the level physical features 

to depict challenges [15] but can also consider the player’s affective state [16]. 

Even though there are multiple positive aspects to point regarding DDA, there are 

also some drawbacks that can be pointed and that are sustained in literature, namely: 

• Player frustration, especially if the adjustments are not finely tuned or if they 

fluctuate too frequently, such as the “rubber-band” effect in racing games [9]. 

• Misuse of the adjustment mechanism, in which the players notice that rules 

change somehow depending on their performance, and then feel tempted to exploit 

those changes in their favor. The example of the previous point is also applicable. 

• Impact on skill development, as adapting to the player's abilities can prevent 

them from overcoming obstacles that are essential for skill improvement. 

• Reduced immersion, because abrupt changes in difficulty levels can break the 

flow and remind players that they are in a constructed environment [17]. 

 

Our work focuses those drawbacks, trying to promote a way to keep the original chal-

lenge, but setting an adequate timing to intervene, as we will see in the next section. 



Dungeon Wipe: Exploring DDA with Power-Up Mechanics  3 

3 Indirect DDA Adjustments  

3.1 Approach Foundations 

The main premise of our approach for indirect adjustments is straightforward: for 

players struggling to accomplish to overcome a level, power-ups should be placed in 

advance, preventing premature failure, and adding an additional buffer to the learning 

curve. For players exceeding the amount of challenge, power-ups should come when 

they are less useful (for instance, when the players’ life is maxed out), slightly in-

creasing difficulty without removing their empowerment. Still, the number of power-

ups that are spawned for a level should be the same regardless of the players skills. 

For this preliminary study on the subject, we are focusing the difficulty adjust-

ments on applying those principles with healing potions, a life regeneration mecha-

nism that in normally present in action videogames [18], even though a more struc-

tured and complex approach can have the same foundations with other power-ups. 

 

3.2 Application Setup 

To test our approach, we are in the development process of an action rogue-like 

dungeon-crawler entitled Dungeon Wipe, which will be described with more detail in 

Section 4. In Dungeon Wipe, by design, enemies’ appearance in the level are prede-

termined timed events, meaning that enemy spawners have a deterministic behavior. 

Under these conditions, a level represents implicitly a function that depicts the dam-

age that the player will sustain during the level. This function has higher values for 

sections of higher intensity and lower values for section of calmer gameplay. 

Such function can be established in different manners: recording damage logs for 

one specific game session, a set of playing sessions (for a certain player or group of 

players) or play sessions of virtual AI players. Having a damage function allows pre-

dicting the evolution of the player’s life value on the game. Fig. 1 shows an example 

of such function, considering one single session of a certain player. It is possible to 

observe that the level starts with an intense short period, followed by an also short 

period of rest. This is followed by a more intense confrontation period that provides 

another resting stage before the final wave. Fig. 2 shows the evolution of player’s life 

during that session considering different cases, each one considering a different ap-

proach to provide health recovery items to the player. In case 1 the healing potions are 

spawned constantly, at fixed intervals. It is possible to observe that this leaves the 

player constantly in average values, avoiding more intensive emotions. Case 2 has a 

similar approach but uses two healing items, one restoring a smaller life value and the 

other restoring a higher life value. During the level, the spawn mechanism alternates 

between spawning small and large healing positions. This approach provides a higher 

oscillation of life values because the consecutive items tend to apply a two-stage ef-

fect: death avoidance followed by empowerment. Still, this does not guide the player 

through more intensive emotions. In opposition to cases 1 and 2, in case 3 the spawn-

ing mechanism reacts to the player performance, instead of being predetermined. The 

approach consists of allowing the players to reach lower life values and then reacting 

by providing enough items for them to reach an empowered state of high life value. 



4   Félix et al. 

This is the behavior to which we aimed and is the goal of the proposed mechanism 

that we will cover next. 

 

 
Fig. 1 – Example damage function 

 
Fig. 2 – Impact of health items distribution 

3.3 Proposed mechanism 

The proposed mechanism is described considering that a level as a predetermined 

value to be given as regeneration to the player. This value can be set by the designer 

for manually created levels or defined by the PCG algorithm. The whole generation 

should be divided into healing potions that will be spawned in the level. For this pro-

cess, the following elements should be considered: 

• T: Total healing value that will be provided with healing points.  

• H = {h1 h2, …, hn}: Set of possible healing potions (our prototype has two types of 

potions, small (h30) and large (h60), to recover 30 or 60 points of life.   

• ti: Timestamps that are defined from t1 to tn.  

• A: Anxiety threshold (a life value under A means the player is in anxiety). 

• E: Empowerment threshold (a life value over E means the player is empowered). 

 

The algorithm works as follows: 

• Calculate expected life value at that timestamp, 𝑙𝑖. 

• If 𝑙𝑖<𝐴 (player is in the anxiety zone): 

o Determine the required healing value, ℎ𝑟=𝐴−𝑙𝑖. 

o Spawn the smallest healing potion ℎ𝑗 ∈ 𝐻 such that ℎ𝑗≥ℎ𝑟. 

• Update the player’s expected life value: 𝑙𝑖←𝑙𝑖+ℎ𝑗. 

• Continue spawning healing potions for subsequent timestamps until li exceeds the 

empowerment threshold E. 

 

This approach waits for the player to struggle and then provides recovery stages. 

4 Implemented Prototype and Test Framework 

4.1 Dungeon Wipe 

To apply and test the metrics proposed in the previous section, we have been im-

plementing Dungeon Wipe, a dungeon-crawler game, applying the aforementioned 

principles. In Fig. 3 we present screenshots of the game, showcasing the main game-

play on the left and a healing potion on the right.  



Dungeon Wipe: Exploring DDA with Power-Up Mechanics  5 

    
Fig. 3 – Screenshots of Dungeon Wipe (gameplay on the left, health potion on the right). 

The game is being developed with the Unity engine and following the principles of 

Doppler Interactive GDLC [19]. Now it is in the iterative cycling between production 

and testing aiming for an alpha version, considering different approaches for DDA 

while establishing the final game mechanics of the game. The initial design followed 

the MDA principles [20], aiming for challenge aesthetics driven through PCG for 

replayability. Additionally, the game aims for players under the profile achievers 

(according to Bartle’s taxonomy [21]), setting challenges as completing levels under a 

certain time and gathering as much treasures as possible within the level duration.  

The current version of the game uses levels that have been created but are read 

from external JSON files that can be either stored on the hard drive or on a web serv-

er. Having level externally allows a straightforward use of PCG, as the service that 

provides the files can obtain them from a generation algorithm. 

 

4.2 Preliminary Results 

Playtesting sessions have been used to analyze gameplay, user experience and, 

specifically, players’ perception regarding DDA with the proposed approach. Some 

experiments are still under development, but we have already run some tests having 

the players to play levels with and without potion distribution adjustments.  

Two main hypotheses have been tested: 

• H1: Indirect DDA is not evident to the players.  

• H2: The indirect DDA approach still allows controlling difficulty. 

To test H1, a set of players from a convenience sample comprised by 38 students 

from two different computer science degrees were asked to play the game having 

access to an unspecified option that they could toggle. This option consisted in ena-

bling or disabling DDA. They were faced with the challenge of identifying what the 

options does. 83% of them were not able to perceive changes. The remaining players 

understood that the option controlled somehow the appearance of potions, even 

though no one identified exactly how. After their individual sessions, the players 

could debate, and it was interesting to observe some disagreements. Some claimed 

that the option would make more potions to appear, while others claimed it was the 

opposite. Naturally, this was caused by their performance.  

H2 was tested theoretically using an approach based on the Monte Carlo method. 

We ran multiple simulations, sampling possible evolution of players life considering 

different player profiles and different health potion approaches (fixed intervals, ran-



6   Félix et al. 

dom intervals and with the indirect DDA method) and counting the probability of 

success/failure for the whole level. Fig. 4 shows the defined damage function for a 

test level and the random damage values that were obtained for a single run. Fig. 5 

shows the evolution of the player’s life distributing the healing potions uniformly, 

randomly and with our algorithm. After testing with different damage functions (5 

different levels were considered) and applying 1000 runs for each one, we verified 

that our algorithm provides control over difficulty, in fact making the levels much 

easier. To provide de overall picture, for our model of standard player, the probability 

of failing the level (average of the 5 levels) was 40%, 56% and 8%, using uniformly 

distributed, randomly distributed, and distributed with our algorithm, respectively. 

This shows us that H2 is plausible theoretically. We consider that at this moment it is 

important to compare these values with effective probabilities of success measured in 

the game, as well as perceiving if the indirect change of the probabilities have a posi-

tive impact in the player experience. 

 

 
Fig. 4 – Example of randomized damage 

 
Fig. 5 – Example of a test run 

5 Conclusions and Further Developments 

We have presented an approach for indirect DDA using as a test case a game pro-

totype. By adjusting difficulty indirectly through the strategic placement of healing 

potions, we aimed to enhance player experience without changing the core challenge. 

This preliminary work shows potential, as it allows changing the probability of suc-

cess and failure without having the players to evidently notice the changes. 

Our algorithm controls how health potions are spawned in the levels, but the pro-

posed approach can be used with other types of power-ups, such as movement boosts, 

armor, damage multipliers, game modifiers, and weapons, among others. All those 

types of power-ups are more indirect to the notion of life, but still imply on the proba-

bility of success in the level. Further research will focus on understanding these dif-

ferences and how the parametrization of such power-ups can also affect difficulty. 

Still, there is room for further research regarding the distribution of power-ups. Our 

algorithm uses an overall value to be distributed within a level considering power-ups 

that are spawned at certain timestamps. We also aim to research the alternative of 

adjusting the probability of dropping power-ups when killing enemies, which might 

depend on the current level time, current live value, and the probability deviation.  



Dungeon Wipe: Exploring DDA with Power-Up Mechanics  7 

References 

1.  Csikszentmihalyi M (1991) Flow: The Psychology of Optimal Experience. Harper & Row 
2.  Chen J (2007) Flow in Games (and Everything Else). Commun ACM 50:31. 

https://doi.org/10.1145/1232743.1232769 

3.  Aponte M-V, Levieux G, Natkin S (2011) Difficulty in Videogames: An Experimental 

Validation of a Formal Definition. In: Proceedings of the 8th International Conference on 

Advances in Computer Entertainment Technology. ACM, New York, NY, USA, pp 49:1--

49:8 

4.  Mourato F, Birra F, Dos Santos MP (2014) Difficulty in action based challenges: Success 

prediction, players’ strategies and profiling. In: ACM International Conference Proceeding 

Series 

5.  Togelius J, Kastbjerg E, Schedl D, Yannakakis GN (2011) What is Procedural Content 

Generation?: Mario on the Borderline. In: Proceedings of the 2Nd International Workshop 

on Procedural Content Generation in Games. ACM, New York, NY, USA, pp 3:1--3:6 

6.  Hendrikx M, Meijer S, Van Der Velden J, Iosup A (2013) Procedural Content Generation 

for Games. ACM Transactions on Multimedia Computing, Communications, and Applica-

tions 9:1–22. https://doi.org/10.1145/2422956.2422957 

7.  Mourato F, Próspero dos Santos M (2010) Measuring Difficulty in Platform Videogames. 

In: 4a Conferência Nacional Interacção humano-computador. Aveiro, Portugal, pp 173–180 

8.  de Castro BP, da Mota RR, Fantini EPC (2017) Level Design on Rogue-like Games: An 

Analysis of Crypt of the Necrodancer and Shattered Planet 

9.  Hunicke R (2005) The Case for Dynamic Difficulty Adjustment in Games. In: ACE ’05 

Proceedings of the 2005 ACM SIGCHI International Conference on Advances in computer 

entertainment technology. pp 429–433 

10.  Juul J, Norton M (2009) Easy to Use and Incredibly Difficult: On the Mythical Border 

Between Interface and Gameplay. In: Proceedings of the 4th International Conference on 

Foundations of Digital Games. ACM, New York, NY, USA, pp 107–112 

11.  Aponte M-V, Levieux G, Natkin S (2011) Measuring the Level of Difficulty in Single 

Player Video Games. Entertainment Computing 2:205–213. 

  https://doi.org/10.1016/j.entcom.2011.04.001 

12.  Togelius J, De Nardi R, Lucas S (2006) Making Racing Fun through Player Modeling and 

Track Evolution. In: Proceedings of the SAB’06 Workshop on Adaptive Approaches for 

Optimizing Player Satisfaction in Computer and Physical Games 

13.  Togelius J, De Nardi R, Lucas SM (2007) Towards Automatic Personalised Content Crea-

tion for Racing Games. 2007 IEEE Symposium on Computational Intelligence and Games 

252–259. https://doi.org/10.1109/CIG.2007.368106 

14.  Pereira G, Santos P, Prada R (2009) Self-adapting Dynamically Denerated Maps for Turn-

based Strategic Multiplayer Browser Games. In: ACE ’09 Proceedings of the International 

Conference on Advances in Computer Enterntainment Technology. pp 353–356 

 

 


